
Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

BRINGING THE GRAIL TO THE CCRMA STAGE

Fernando Lopez-Lezcano

CCRMA
Stanford University, USA

nando@ccrma.stanford.edu

Christopher Jette

CCRMA
Stanford University, USA

jette@ccrma.stanford.edu

ABSTRACT

The Stage, a small concert hall at CCRMA, Stanford University,
was designed as a multi-purpose space when The Knoll, the build-
ing that houses CCRMA, was renovated in 2003/5. It is used for
concerts, installations, classes and lectures, and as such it needs to
be always available and accessible. Its support for sound diffusion
evolved from an original array of 8 speakers in 2005, to 16 speak-
ers in a 3D configuration in 2011, with several changes in speaker
placement over the years that optimized the ability to diffuse pieces
in full 3D surround. This paper describes the evolution of the design
and a significant upgrade in 2017 that made it capable of rendering
HOA (High Order Ambisonics) of up to 5th or 6th order, without
changing the ease of operation of the existing design for classes and
lectures, and making it easy for composers and concert presenters to
work with both the HOA and legacy 16 channel systems.

1. INTRODUCTION

We have been hosting concerts at CCRMA since it was created in the
70’s. In 2009 we started expanding our concert diffusion capabilities
while gearing up for the inaugural season of a new concert hall being
built at Stanford, the Bing Concert Hall. In 2013 we were able to
use our newly created GRAIL system (the Giant Radial Array for
Immersive Listening) to diffuse concerts with out own “portable”
speaker array with up to 24 speakers and 8 subwoofers arranged in a
dome configuration for full 3D surround sound diffusion [1].

Figure 1: CCRMA Concert in the Bing Studio with the GRAIL

By 2011 our Listening Room Studio included a 22.4 speaker ar-
ray in a full 3D configuration (with speakers below an acoustically
transparent grid floor), which could accurately decode periphonic

(full 3D) 3rd order Ambisonics. Our upgraded GRAIL concert dif-
fusion system was also able to render up to 3rd order Ambisonics,
or even 4th order if some errors in rendering were ignored. This
was made possible by the publication of algorithms that allowed the
design of HOA decoders for irregular arrays [2]. In particular, the
release of the Ambisonics Decoder Toolkit software package written
by Aaron Heller [3][4], which included software implementations
of the aforementioned research, simplified the task of designing de-
coders. This work enabled the creation of successful diffusion strate-
gies for irregular speaker placement in the Bing Concert Hall and its
rehearsal space (the Studio), as well as other spaces. Both systems
benefited from an open architecture based on the GNU/Linux oper-
ating system and many free audio software packages that, combined,
allowed us to tailor the system to our specific needs.

We have curated many concerts with content of varied spatial
resolution. As composers went on to create works requiring more
speakers for a higher Ambisonic order decode, the limitations of
our systems became apparent. While Ambisonics is well known
for a graceful degradation of the spatial resolution when not enough
speakers are available for the original order of the piece, the state of
research and artistic creation was moving towards orders that were
higher than what we could support.

1.1. From WFS tests to HOA in the Stage

In 2011 we bought 32 small speakers (Adam A3X) to create an ex-
perimental WFS array. Over the next few years we used it for demos
and classes, but other than a couple of concert performances the sys-
tem was used very sparingly. On the other hand, our Stage concert
hall had a complement of 16 speakers and 8 subwoofers, which lim-
ited our ability to render full 3D HOA (we had been recently using a
32.8 system for our off-site concerts).

In an effort to upgrade our dedicated diffusion space at CCRMA,
we proposed to re-purpose the “unused” speakers and add them to
the existing Stage diffusion system. This addition would increase
the total count of speakers to 48, and preliminary studies determined
that we would be able to render up to 6th order Ambisonics quite
accurately. Natasha Barret’s research [5] points to diminishing re-
turns in spatial performance for 7th and higher order decoding, so
we felt confident that moving to a fifth or sixth order system would
be adequate for our needs and a worthwhile upgrade.

The design and implementation of this upgrade ended up being
anything but easy.

2. REQUIREMENTS

The existing system in the Stage consisted of 8 movable tower stands,
each one housing a main speaker (four S3A and four P33 Adam
high quality mid-field studio monitors) and a subwoofer (M-Audio

43



Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

SBX10). In addition to those, we had 8 Adam P22 speakers hang-
ing from the trusses and arranged as a ring of 6 with an additional
two more overhead. All 16 speakers could be individually addressed
from a Yamaha DM1000 mixer, with some limitations as the sub-
woofers were paired to the 8 main speakers - we used their internal
crossovers - and could not be used by the upper 8 speakers.

The Stage is not only a concert hall, it is also regularly used for
classes, lectures, demos and other events that do not need or want a
high spatial resolution speaker array. In fact, the majority of users re-
quire access to just stereo playback. As the CCRMA concert events
combine live performers, touring musicians and researchers, many
concerts do not deal with 3D surround sound and use mostly stereo
projection. The existing flexible 16 channel system allowed for cre-
ative diffusion using a combination of speakers and provided flexi-
bility in which orientation the space could be used.

One of the key requirements for the upgrade was that the existing
system and methods of operation would not be changed. Further-
more, the space sometimes is used to accommodate big audiences
(for its size), so any addition to the Stage could not permanently en-
croach in the floor space available for setting up chairs for events.

These varied requirements complicated the design process in
ways which we had not anticipated.

We were required to:

1. have a mode of operation that would keep the existing de-
sign, 8 main speaker and subwoofer towers plus 8 secondary
speakers hanging from the ceiling trusses, all of them driven
directly from our DM1000 digital mixer

2. not degrade the performance of the existing system in any
way, including the low latency achievable with the digital
mixer, appropriate for live performances

3. have a way to easily switch from the basic system to a fully
expanded speaker array which added 32 speakers, all of them
controlled through a single Linux based computer similar to
the one managing diffusion tasks in our Listening Room [6][7]

4. have the ability to physically move the additional small speak-
ers positioned at ear level out of the way, so that they would
not interfere with the existing floor footprint of the diffusion
system

5. easily switch between the two modes of operation, preferably
with “one big switch” that would need no expertise from the
operator

6. the system had to be “low cost”

This created a situation with many mutually incompatible sys-
tem requirements from a design standpoint.

3. FEASABILITY TESTING

Before starting the upgrade a practical question had to be answered:
were the tiny A3X speakers good enough (in quantity) to be able to
produce enough SPL for a concert diffusion situation? Matt Wright
and Christopher Jette organized a quick test session in which we in-
stalled 16 speakers in a ring at ear level (on top of chairs and plastic
bins!) and drove them from our GRAIL concert control computer.
This test was successful and confirmed that they were up to the task,
but only if properly equalized, so we could go ahead with the up-
grade.

4. LOCATION, LOCATION, LOCATION

Where and how to mount all speakers was a difficult task, made
harder by the rectangular shape of the room and the presence of
trusses that hold the cathedral-style ceiling. To arrive at a prelim-
inary even distribution in space we used a simple successive approx-
imation software that treats speaker locations as electrons that repel
each other, and determines the approximate ideal locations of the
speakers [8]. Additional constraints were introduced in the software
to “fix” the position of the existing 16 speakers in space (remember
that our design must be a superset of the existing system), and see
where the rest of the speakers would fall.

Figure 2: Ideal projection of speaker locations on a hemisphere (red
dots: original upper 8 speakers, blue dots: ear level speakers)

A simple geometrical model of the Stage created in OpenSCAD
[9] was used to project those ideal locations into the walls and ceiling
of the Stage, to see where we might approximate the ideal locations
in space with real mounting points. It was challenging to find loca-
tions which would not be shadowed by the ceiling trusses for most
of the audience seating space, and in a couple of instances there was
unavoidable shadowing that we had to ignore.

Figure 3: OpenSCAD model of the Stage (seen from below) with
speaker location projections, the cylinders partially represent the
A/C ducts, the black beams are the lower part of the trusses

We used ADT (the Ambisonics Decoder Toolkit)[3][4] as a de-
sign verification tool, in particular the energy and particle velocity
graphs helped us determine if the proposed mounting locations for
the speakers would provide uniform coverage for the desired Am-
bisonics orders (5ht and 6th order was the goal). Other diffusion

44



Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

methods (VBAP, etc) would also benefit from a uniform spatial dis-
tribution of the speakers.

Figure 4: Side view of the Stage with speaker mounting points. Grey
dots are ideal positions in a hemispherical dome, colored rectangles
are the real positions

The final speaker configuration at which we arrived was an ear
level ring of 20 speakers (the 8 original towers plus 12 additional
A3X speakers), another ring of 14 A3X speakers mounted on the
trusses (roughly 20 degrees in elevation above the first ring), and the
original 8 speakers (roughly 20 degrees of elevation higher) plus 6
more A3X’s distributed in the upper part of the dome. The 12 ear
level speakers could not be mounted on stands that would take away
floor space needed for seating, and had to be able to be moved out of
the way when not in use. We installed a truss mounted rail system
and designed telescoping mounts that could be switched between
the normal listening position and a “parked” position where the 12
small speakers are moved next to the existing towers. The mechan-
ical design took a long time and several prototypes were built and
tested. Our final system features custom fabricated mounts made
from 80/20 extruded aluminum profiles and hanging steel channel to
facilitate rolling the speakers between locations.

5. DRIVING MANY SPEAKERS

One of the difficult aspects of the design process was finding an audio
routing and distribution technology that would allow us to satisfy all
the requirements within a reasonable amount of time and with the
limited budget and manpower available to us. Furthermore, the full
system needed to be controlled from a computer running GNU/Linux
(like our Listening Room system), and Linux desktops and laptops
should be able to connect to it for diffusion tasks.

For our GRAIL concert sound diffusion system we had been us-
ing a homebrew system which consisted of one half of a network
snake (the Mamba box), plus some ingenious software in the form
of a Jack[10] client (jack-mamba [11]), to transform it into a very re-
liable 32 channel D/A converter. While the system proved to be rock
solid for our concerts, it was not really expandable in a way which
could satisfy our requirements.

The first audio technology we explored was MADI. We had used
RME MADI audio interfaces which had good driver support in Linux
in our Listening Room system. For this 22.4 system we had to use
two cards, one RME MADI and one RayDAT. This type of system
could scale up to the number of inputs and outpus that we needed, but
we could not find an easy way to control rerouting of connections to

Figure 5: Speaker mount

support both modes of operation. The only reasonable cost option we
found was an RME MADI switching matrix, but switching between
MADI scenes required several operations on the front control panel,
and there was no option for remote software control which would
have enabled us to design a separate simple to use interface.

Our experience with the ethernet based Mamba digital snake sys-
tem suggested that a similar technology based on ethernet could be
an answer to meet our requirements.

There are several protocols that rely on ethernet connections to
transport audio and interconnect several audio interfaces together.
The most widespread commercially so far has been Dante, but that
was ruled out as the protocol specification is closed and proprietary,
and there is no formal support for Linux. There is one company
that offers a 128 channel ethernet card with associated Linux binary
drivers, but there is no guarantee that this will be supported for future
kernel upgrades and the card and driver combo is extremely expen-
sive.

AVB (Audio Video Bridging) [12], on the other hand, is an open
standard with a free software implementation embodied in the ope-
nAVNu project [13]. Regretfully not many manufacturers have used
this standard for their products. One product manufacturer we con-
sidered was Motu, as their newer audio interfaces can be connected
to each other through AVB and standard ethernet cables. Their in-
ternal configuration can be completely controlled through a built-in
web server which makes it platform agnostic, and there is a pub-
lished API that can use JSON http requests and OSC to remotely
control all aspects of its operation. A Linux computer could control
the full system without relying on proprietary software.

Regretfully the AVNu project does not yet include code for a
complete Linux-based solution. It would be possible to create one,
but that would require a substantial software development effort which
was beyond the scope of the resources available to this project.

We bought a couple of interfaces for evaluation and experimented
with using their USB interfaces. In the most desirable MOTU cards
we found that the implementation of the USB2 class compliant driver
was limited to 24 channels, which was much less than what we

45



Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

needed (the cards were advertised as having 64 channel I/O through
USB2, but that was only possible when using their proprietary driver).
So we were at an impasse.

5.1. Firmware giveth...

Almost by chance we found an online reference to a “64 channel
mode”, and traced it back to a very recent firmware upgrade that
added a mode selection configuration option to the USB audio in-
terface. The new firmware allowed us to set the maximum number
of channels handled by the USB class compliant driver to 64 if the
sampling rate was limited to 44.1 and 48KHz, which was accept-
able for our use case. This is beyond what the USB2 specification
can do, but it performed well in tests under Linux, and allowed us
to potentially address all speakers through the GRAIL control com-
puter’s USB2 interface, while multiple additional audio interfaces
could communicate audio data through AVB. This new feature also
would enable end users to interface with the finished diffusion sys-
tem using another audio interface with its own USB2 interface. This
would provide multiple entry points into the system using just USB2,
making it easily usable by our users.

A firmware upgrade transformed the Motu hardware into a vi-
able option. But what firmware can give, it can take away, as we will
see...

5.2. Digital Mixer Mode

The first phase of the design centered around finding a configura-
tion that could keep the old setup of DM1000 plus 8 main speakers
operational with minimal changes. Some simple tests determined
that routing the DM1000 to a 16A Motu interface through ADAT
so it would drive the speakers (instead of the DM1000 driving them
directly) would not change the latency of the system significantly.
This 16A audio interface would also be the word clock master for
the whole system, and this basic setup would depend on only the
DM1000 and that interface being up and running to work.

This means that the 16.8 legacy system (we will call this the
“Digital Mixer Mode”) could be kept unchanged, and could be a
subset of the full 48.8 system (the “OpenMixer Mode”).

5.3. Routing the Subwoofers

There was a very long design detour that tried to use the internal
crossover of the old subwoofers in “Digital Mixer Mode” as they
were working fine and everybody wanted to keep their well known
sound. We are going to skip those 4 months and jump straight into
the design that incorporated new subwoofers much later.

The subwoofer upgrade proved to be a problem, both from the
point of view of signal routing and from the specs that they had to
meet. We wanted to have standalone crossovers when in “Digital
Mixer Mode”, and software crossovers implemented in the GRAIL
control computer when in “OpenMixer Mode”. We also wanted to
have a rather high crossover frequency (originally 110Hz, currently
about 90Hz) to minimize the cone excursion of the main speakers at
low frequencies (they are mid-field monitors and almost too small
for the space, but we love their very precise sound). And we wanted
a low frequency limit of around 20Hz with enough power to fill the
room without clipping or distortion.

The ideal subwoofer that would meet all our requirements does
not exist (the details of why that is the case are beyond the scope of

this paper). We ended up buying SVS SB4000 units, and not using
the internal DSP processing included in the unit.

The only workable solution we found was to use external pro-
grammable crossovers when the system was operating in “Digital
Mixer Mode”. We used DBX 260 units and routed them through in-
puts and outputs of the same Motu audio interface used to drive the
8 main speakers (this back and forth tour added a tiny bit of latency).
In “Digital Mixer Mode” the DBX crossovers are inserted into the
signal path by the internal routing of the Motu audio interfaces, and
in “OpenMixer” mode they are completely disconnected so that the
GRAIL control computer can directly interface with speakers and
subwoofers, and provide its own separate digital crossovers. In “Dig-
ital Mixer Mode” the signals going to the 8 main speakers are routed
to the crossovers which split it between the main speakers and to
the corresponding subwoofers, in “OpenMixer Mode” all speakers
are mixed in to the 8 subwoofers. All the signal switching is ac-
complished using the routing matrix that is part of the Motu audio
interfaces.

The use of external crossovers also allowed us to properly match
phase at the crossover frequency and equalize the whole system in
“Digital Mixer mode” for best performance, something we could not
do before the upgrade.

Another 16A Motu interface drives the upper 8 speakers with
signals that are sent from the digital mixer through AVB and the
internal routing matrices of both audio interface cards.

The core system in “Digital Mixer Mode” consists of two Motu
16A cards, the DBX crossover units and the DM100 digital mixer.
That not only keeps the same operational characteristics as before,
but improves the system through better crossovers and speakers.

Figure 6: Signal routing in Digital Mixer Mode

5.4. And firmware taketh away...

In the middle of the design and implementation of the system we
found that newer Motu interfaces no longer had the 64 channel mode
configuration option. It turns out that Motu had “unspecified prob-
lems” with it, and removed the feature from their products through
another firmware upgrade.

Suddenly the audio interfaces were useless for our purposes (24
channels instead of 64), with no fix coming from Motu, after all,
they worked fine with their proprietary drivers. To make a long story
short, we were able to downgrade the firmware to a version where
that feature was still supported, and everything worked again. A not

46



Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

very sustainable fix and a hack as we (and possibly random users of
the system) have to ignore the constant reminders that a “software
upgrade is available”.

While software upgradable products offer useful flexibility, you
never know when something you depend on might go away, or some
new and exciting capabilities might be added, and in which order
that might happen. That was not the last problem we had with Motu
firmware versions.

5.5. OpenMixer Mode

With the core architecture now a working reality, we added three
24Ao Motu audio interfaces hidden in the ceiling trusses of the Stage
to drive the additional 32 small speakers (two would have been enough,
but using three made the wiring easier and wiring represented a large
time expenditure in this upgrade). An additional 16A in the Open-
Mixer control computer rack (on casters) acted as the interface be-
tween the OpenMixer Linux control computer and the rest of the
system, using a single USB2 interface. AVB streams are used to
send and receive audio to all other Motu audio interfaces, and finally
to all speakers, and changing the internal routing in the audio inter-
faces through JSON http calls configures the audio routing for the
two main modes of operation.

An additional 24Ai audio interface in the OpenMixer system
rack is the entry point in the system for connecting laptops and other
computers for concert diffusion or other purposes (Windows, OSX
and Linux are all supported). A single USB2 cable allows us to have
up to 64 channels of input/output available, which is enough for our
current needs. AVB and the internal routing of the interfaces is used
to send signals around.

Yet another 16A audio interface is used to interface with our
dedicated Linux desktop workstation which resides on another cart
together with its display, keyboard and mouse. A total of 8 Motu
audio interfaces interconnected through AVB make up the audio part
of the diffusion system.

Three Motu AVB switches connect all the audio interfaces to-
gether, and the different racks and mobile units in the space are eas-
ily connected through long ethernet cables (one mobile rack for the
digital mixer and associated equipment, another for the OpenMixer
control computer and another one for the desktop computer). The
use of ethernet means there is a significantly smaller cable count to
manage 64 channels of audio.

5.6. Switching modes

The attentive reader might have noticed that switching between “Dig-
ital Mixer Mode” and “OpenMixer Mode” seems to be happening
magically so far. While we do have a Linux control computer, we
cannot rely on it for switching modes. The system should keep work-
ing even if the control computer is off, or if it breaks down.

A solution that has worked admirably well is to add yet another
computer (as if the system was not complex enough). This addi-
tional computer is a RaspberryPI 3 with a touch panel, mounted right
next to the digital mixer. It allows the user to switch sampling rates,
switch between operating modes and even activate different options
in “OpenMixer mode” (changing between the Direct and Ambison-
ics modes, selecting Ambisonics decoders, etc). It communicates
through ethernet with all the Motu audio interfaces and the main
OpenMixer control computer.

The OpenMixer control computer also has a touch display, and

Figure 7: Signal routing in OpenMixer Mode

the software was designed so that either of them can be used to con-
trol the system and they stay synchronized with each other.

5.7. What? More Speakers?

Quite early in the implementation process Christopher Jette pushed
for the immediate inclusion of something we had planned as a future
expansion. In addition to the existing subwoofer and main speaker,
the eight main towers would house 8 speakers almost hugging the
ground. These speakers were included to help “pull down” the sound
image, specially in the Ambisonics decoder modes. So our final
speaker count is 56 speakers and 8 subwoofers, adding up to 64 in-
dividual outputs. We are maxed out.

5.8. Control Software

In “OpenMixer Mode” the Linux control computer (currently boot-
ing Fedora and running an optimized RT patched kernel) performs all
internal DSP using SuperCollider[14] and its Supernova multi-core
load-balancing sound server [15]. Jconvolver [16] is used for very ef-
ficient low latency partitioned convolution, and implements the digi-
tal loudspeaker correction filters. The software itself is conceptually
simple, it provides for level and delay equalization of all speakers,
digital crossovers (a combination of Linkiwitz Rayley [17] and But-
terworth filters), routing control so that different sound sources (digi-
tal mixer, laptop, desktop) can be connected to the speakers, optional
built-in Ambisonics decoders created with ADT [3][4](up to 6th or-
der) and of course digital equalization of all speakers with convolu-
tion filters created from analyzing their measured impulse responses
with the DRC (Digital Room Correction [18]) software package.

SuperCollider is started automatically on boot through a systemd

47



Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

unit and takes care of orchestrating the rest of the system startup pro-
cess. First, Jack [10] is started, then the SuperCollider program starts
the Supernova sound server and its associated DSP software, two in-
stances of Jconvolver, and finally everything is connected together
using aj-snapshot and dynamically generated XML connection files.
SuperCollider monitors all auxiliary programs, and restarts and re-
connects them if they somehow fail.

The whole system is optimized for low latency, and currently
runs with 128 frames per period (work is underway to get it to work
at 64 frames per period, which would start approaching the perfor-
mance of the digital mixer which runs with 64 frame blocks).

SuperCollider is also used for the touch graphical user interface
in both the main computer and the small RaspberryPi switching ap-
pliance.

5.9. Calibration

For best performance the full speaker array is calibrated after the
initial installation and when hardware changes are made. First el-
evation and azimuth angles for all speakers are measured, as well
as the distances to the center of the space. These measurements are
used to create the Ambisonics decoders for the main array and the
subwoofers, and also to compensate for arrival times at the center
of the space. After that we use Aliki [19] to measure the impulse
response of the speakers, and that information is used to calculate
convolution filters using DRC. Finally SPL measurements are done
to compensate for small differences in speaker loudness in both di-
rect and Ambisonics modes.

6. PROBLEMS AND CHALLENGES

While the selection of Motu products lead to a viable design, there
are still occasional problems when using them on “unsupported plat-
forms”.

Occasionally an audio interface can disconnect from one or more
of its AVB streams. The web interface shows them blinking and we
have not found a way out of this other than rebooting both interfaces.
After the reboot the connections are re-established automatically. We
have not been able to find a way to reproduce this, and it only hap-
pens in the more complex Stage system we are describing in this
paper (it has not happened, so far, in a far simpler system now run-
ning in our Listening Room). We have to do an thorough audit of the
existing streams and only enable exactly what we need. This may
be a problem solved in later firmware releases, but we are chained to
older ones to retain the features that make the system possible in the
first place.

In a different Studio in which we also deployed a single Motu
interface we found another firmware related problem when using the
class compliant driver under Linux. Suddenly inputs going into the
computer through USB would switch channels in blocks of 8. What
was coming through input 1 is suddenly in input 9, and so on and so
forth. Again, downgrading to a previous firmware version fixes the
problem (or using the proprietary driver). Caveat emptor.

In terms of the Linux control computer for the Stage system,
the long term solution for interfacing with the audio interfaces is to
use AVB streams directly. That would lift the 64 channel limitation
(we of course would like to add a few more speakers), and hopefully
make the system more reliable. The foundation of that is available
in the OpenAVNu git repository but much work remains to be done
(some preliminary tests managed to sync the Linux computer to the

AVB clock, and get the system to recognize the existence of a Motu
card).

6.1. Motu vs. Jack vs. PulseAudio

A weird feature of the Motu interfaces is that every time the sampling
rate is changed (even if it is an internal change and the card is not
slaved to an external clock) it takes the card a few seconds to acquire
a “lock”. During this time Jack can try to start, but at some point it
decides that it can’t, and fails.

This can lead to an endless loop of failed starts in the following
scenario: assume the card is already running at 44.1KHz and we
are trying to start Jack at 48KHz. Jack requests exclusive access to
the card from PulseAudio and the request is granted. Jack tries to
start but fails, because the card was running at 44.1KHz and it takes
time to switch to 48KHz. After the attempt the card is switching to
48KHz, but when Jack quits it hands the card back to PulseAudio,
which promptly resets its sampling rate to its default, 44.1KHz. And
we are back where we started. There is no way to start Jack, unless
PulseAudio is killed or its default sampling rate is changed to the
one we want, or we tell it to ignore the card, which is not what we
want to do.

If there is no change in sampling rate and Jack fails to start,
waiting a few seconds and trying again succeeds.

To avoid this problem, in the control software for both the Lis-
tening Room and Stage Linux computers we use a JSON http call to
check the lock status of the audio interface clock and delay the start
of Jack until the sampling rate is locked.

7. CONCLUSIONS

The opening concerts of the newly upgraded Stage took place in Oc-
tober 4/5 2017, and the system performed very well (at the time we
were still using the old subwoofers). Another round of upgrades in
2018 replaced the original subwoofers with newer ones, as outlined
above, and also upgraded the main 8 speakers with newer A77X
Adam monitors. The lower layer of speakers were repositioned at
the bottom of the main towers, and the new subwoofers were stacked
immediately above them (originally they had been reversed). A sec-
ond round of successful concerts (our annual Transitions concerts)
took place in October 2018 with the fully upgraded array. The full
array has seen more use in the past year, with several concerts using
it instead of what would have been stereo or quad diffusion.

We have outlined the design process of a complex Linux-based
diffusion system, using off-the-shelf components and GNU/Linux
for all the software components.

8. ACKNOWLEDGMENTS

This would have been impossible to accomplish without the sup-
port of CCRMA and its community. Many many hours of discus-
sions made for a better system that satisfies all the use cases of the
space. Endless critical listening tests honed the system into better
and better sound quality. Many thanks to Eoin Callery for his con-
tributions to the design and keen ears, and for keeping us grounded
at all times (we tend to fly away). The whole project would not have
happened had we not had Christopher Jette on the CCRMA Staff
at the time. He pushed and worked and talked and discussed and
designed and kept things going. Invaluable. Matt Wright, our Tech-
nical Director, also spent many hours helping with big and small
details. Many students helped, in particular thanks to Megan Jurek,

48



Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 8: Transitions 2018 concert

who spent many hours soldering many many small connectors, and
routing what seemed like miles of cables. No audio would flow if
not for her help. Jay Kadis, our audio engineer at the time, also
spent quite a bit of time wiring DB25 connectors and cabling the
main towers. Juan Sierra, one of our MA/MST students, was instru-
mental in properly phase matching of the new subwoofers with the
main speakers and tuning the crossovers for best performance, the
Stage sounds much better thanks to him. Carlos Sanchez, sysadmin
and staff at CCRMA, designed and implemented the hardware and
software that drives the touch interface that controls the whole sys-
tem. And Constantin Basica, our new concert coordinator, has been
helping visiting artists use the full system for much more interesting
concerts over the past year. Many thanks to all involved, we can now
do justice to many fantastic pieces from composers that tickle our
ears with beautiful sounds arranged in space.

9. REFERENCES

[1] Fernando Lopez-Lezcano, “Searching for the grail,” Computer
Music Journal, vol. 40, no. 4, pp. 91–103, 2016.

[2] Franz Zotter and Matthias Frank, “All-round ambisonic pan-
ning and decoding,” J. Audio Eng. Soc, vol. 60, no. 10, pp.
807–820, 2012.

[3] Aaron Heller, Eric Benjamin, and Richard Lee, “A toolkit for
the design of ambisonic decoders,” Proceedings of the Linux
Audio Conference 2012, 2012.

[4] Aaron Heller and Eric Benjamin, “The ambisonics decoder
toolbox: Extensions for partialcoverage loudspeaker arrays,”
Proceedings of the Linux Audio Conference 2014, 2014.

[5] Thibaut Carpentier, Natasha Barrett, Rama Gottfried, and
Markus Noisternig, “Holophonic sound in ircam’s concert hall:
Technological and aesthetic practices,” Computer Music Jour-
nal, vol. 40, no. 4, pp. 14–34, 2016.

[6] Fernando Lopez-Lezcano and Jason Sadural, “Openmixer: a
routing mixer for multichannel studios,” in Proceedings of the
Linux Audio Conference 2010, 2010.

[7] Elliot Kermit-Canfield and Fernando Lopez-Lezcano, “An up-
date on the development of openmixer,” Proceedings of the
Linux Audio Conference 2015, 2015.

[8] A. B. J. Kuijlaars E. B. Saff, “Distributing many points in a
sphere,” in The Mathematical Intelligencer, Volume 19, Num-
ber 1, 1997.

[9] “Openscad, the programmers solid 3d cad modeller,” http:
//www.openscad.org/.

[10] Paul Davis, “Jack audio connection kit,” http://
jackaudio.org/, 2002.

[11] Fernando Lopez-Lezcano, “From Jack to UDP packets to
sound and back,” in Proceedings of the Linux Audio Confer-
ence 2012, 2012.

[12] “The avnu alliance (avb),” https://avnu.org/.

[13] “Openavnu git repository,” https://github.com/
AVnu/OpenAvnu.

[14] J. McCartney, “Supercollider: A new real-time synthesis lan-
guage,” in Proceedings of the International Computer Music
Conference, 1996.

[15] Tim Blechmann, “Supernova: a multiprocessor aware real-
time audio synthesis engine for supercollider,” M.S. thesis, TU
Wien, 2011.

[16] Fons Adriaensen, “Jconvolver, a convolution engine,” http:
//kokkinizita.linuxaudio.org/linuxaudio/,
2006.

[17] Siegfried Linkwitz, “Active crossover networks for noncoin-
cident drivers,” in Journal of the Audio Engineering Society,
Volume 24 Issue 1, 1976, pp. 2–8.

[18] Denis Sbragion, “Drc: Digital room correction,” http://
drc-fir.sourceforge.net/, 2002.

[19] Fons Adriaensen, “Aliki, an integrated system for im-
pulse response measurements,” http://kokkinizita.
linuxaudio.org/linuxaudio/, 2006.

[20] Ingo Molnar and Thomas Gleixner, “Real-time linux, the pre-
empt_rt patches,” https://wiki.linuxfoundation.
org/realtime/start, 2000.

49


